
Enhancing Precision in Process Conformance:
Stability, Confidence and Severity

Jorge Munoz-Gama
Universitat Politecnica de Catalunya

Barcelona, Spain
jmunoz@lsi.upc.edu

Josep Carmona
Universitat Politecnica de Catalunya

Barcelona, Spain
jcarmona@lsi.upc.edu

Abstract—Process Conformance is becoming a crucial area
due to the changing nature of processes within an Information
System. By confronting specifications against system executions
(the main problem tackled in process conformance), both system
bugs and obsolete/incorrect specifications can be revealed. This
paper presents novel techniques to enrich the process confor-
mance analysis for the precision dimension. The new features of
the metric proposed in this paper provides a complete view of
the precision between a log and a model. The techniques have
been implemented as a plug-in in an open-source Process Mining
platform and experimental results witnessing both the theory and
the goals of this work are presented.

I. INTRODUCTION

The constant growth of Information Systems (IS) has been
essential for the rising of new disciplines aiming at providing
a systematic way of dealing with the vast available data that
is generated. Among the various types of data related to an
IS, event logs and formal models are two important sources
of information. An event log is a set of traces produced by
monitoring a particular set of activities in a IS, thus reflecting
the reality. In contrast, formal models are used to precisely
specify the operative behavior of the IS, e.g., like a contract
of what must be done and in which order.

By focusing on only in the analysis of event logs, traditional
areas like Data Mining can answer many questions regarding
various aspects of the IS. However, it was only the advent of
the Process Mining area that enabled to address the problem
of confronting the reality (in the form of logs) with the
specification (in the form of formal models). Process mining
comprises three classes of techniques: discovery, conformance
and extension [1]. It can be oriented to the control flow, the
data or the social aspects of a process. This work proposes
process conformance techniques to aid the analysis of the
control flow aspect.

Process Conformance aims at evaluating the adequacy of
a model in describing a log. Analyzing conformance is a
complex task which involves the interplay of different and
orthogonal dimensions [2].

• Fitness: indicates how much of the observed behavior is
captured by (i.e. “fits”) the process model.

This work has been partially supported by Intel Corporation and by the
project FORMALISM (TIN2007-66523).

• Precision: refers to overly general models, preferring
models with minimal behavior to represent as closely as
possible the log.

• Generalization: addresses the degree of abstraction be-
yond observed behavior.

• Structure: refers to models minimal in structure which
clearly reflect the described behavior.

The work presented in this paper proposes novel techniques
to be applied within the precision dimension.

Different algorithms for conformance checking have been
presented in the literature, getting more robust-aware all the
time (e.g. [3]). A complete survey can be found in [4], [5]. In
particular, some examples of approaches focused on precision
are: [6] (measuring the percentage of potential traces in the
model that are in the log), [7] (comparing two models and a log
to see how much of the first model’s behavior is covered by the
second) used in [8], [9] (comparing the behavioral similarity of
two models without a log), and [10] (using minimal description
length to evaluate the quality of the model).

The work presented in this paper extends and complements
the technique introduced in [11], where the precision between
a log and a Petri net was considered. Using a log-guided
traversal of the model, the refereed technique avoids the
full state-space exploration of the Petri net, and provides a
precision metric which evaluates the effort needed to derive
a better (more precise) model. In this work, an extension
of the technique is presented, which additionally considers
potential variability in the log. Moreover, a novel technique
to estimate the confidence interval of the metric is introduced,
deriving an enhanced metric for precision which not only
provides a value but also estimates its robustness. Finally,
techniques to measure the severity of the imprecisions detected
are developed, thus providing a very important step into
two directions: improving the feedback provided by precision
checking tools and bridging the gap towards automated tech-
niques for precision oriented model refinement.

The techniques have been implemented as a ProM [12] plug-
in. The experimental results reported provide insights on the
real usefulness of the new precision analysis proposed in this
paper.

Log Traces# Instances

1435
946
764
54
1

A B D E A
A C D G H F A
A C G D H F A
A C G H D F A

A C D G G H F A

(a) Log L1

A
B

C

G

D

H

F

E
A

Set
Checkpoint

Register
Low-value Claim

Register
High-value Claim

Consult
Expert

Check
Liability

Check
Policy

Complete
Low-value Claim

Complete
High-value Claim

Set
Checkpoint

p0 p1 p2

p3 p6

p5

p4

p7 p8

(b) Model M1

Fig. 1. Running example of a plausible liability insurance claim process, in a banking scenario. The example is composed by two elements: (a) a log L1

reflecting executions of the process and, (b) a possible model M1 for the process. The modeling language used is Petri nets. For the reader not familiar with
Petri nets: a transition (box) is enabled if every input place (circle) holds a token (black dot). If enabled, the transition can fire, removing tokens from its
input places and adding tokens to its output places.

II. PRELIMINARIES

In this section we introduce the two elements needed in any
process conformance analysis: logs and models.

A. Logs

Event logs, or simply logs, contain executions of a system
[1]. These executions represent the ordering between different
tasks, but may also contain additional information, such as
the task originator or its timestamp. For the purposes of this
paper, all this information is abstracted. An example of a log
is shown in Fig. 1a. Formally:

Definition 1 (Trace, Log): Let T be the set of tasks, and
let P(S) denote the powerset over S, i.e., the set of possible
subsets of elements of S. A trace σ is defined as σ ∈ T ∗. And
a log is a set of traces, i.e., EL ∈ P(T ∗).

Definition 2 (Prefixes, Occurrence of a Prefix): Given a
log EL, define pre(EL) as the set of prefixes of EL, i.e.,
pre(EL) = {p | σ = px ∈ EL ∧ p, x ∈ T ∗}. Note that
the empty trace ε is a prefix of any log. Given a prefix
p ∈ pre(EL), pEL# denotes the occurrences of that prefix in
the log, i.e., pEL# = |{σ s.t. σ = px ∈ EL}|. The subscript EL
can be omitted whenever it is clear by the context.

B. Formal Models

The traces of a log EL can be represented with a formal
model M . Given a model M and a trace σ, avail(σ,M)
is the set of tasks available according to M after executing
σ. Models for workflow representation like Petri nets [13]
or its extensions (e.g., YAWL [14]) are considered in this
paper. Due to the lack of space, the reader can follow the
provided references to get insight into the theory underlying
these models. An example of a Petri net is shown in Fig. 1b.
Finally we present transition systems, the formal models used
in the development of the algorithms proposed in this paper.

Definition 3 (Transition system [15]): A transition system
(or TS) is a tuple (S, T,A, sin), where S is a set of states, T
is an alphabet of actions, A ⊆ S × T × S is a set of (labeled)
transitions, and sin ∈ S is the initial state.

III. PROBLEM STATEMENT AND APPROACH

This work extends the precision approach presented in [11].
The refereed technique, consists on three steps for the preci-
sion analysis, that are explained and enhanced in Sect. III-A,
III-B and III-C.

A. Defining Log Behavior

The first step to determine the precision between a model
and a log is to define the behavior reflected in the log. This
representation must contain exactly the same language as the
log, but including also state information in order to be able to
compare the log behavior with the model behavior. For this
purpose, the prefix automaton of a log is defined.1

Definition 4 (Prefix Automaton): Given a log EL, the prefix
automaton of EL is the transition system TS = (S, T,A, sin)
such that S = pre(EL), T corresponds with the tasks of the
process, A = {(s, e, s′)|s′ = se} where e ∈ T , and sin = ε.

Figure 2 shows the prefix automaton construction for the
log in Fig. 1a. The number below each state s represents the
occurrences of the prefix s in the log, i.e., s#. Note that all
the states have an occurrence number greater than zero given
that all them are log prefixes.

A C D G H F A

D E A

D H F A

D F A

B

H

G

3200 947 946

1435

818 764

54

H F

1 1 1 1

A

0 0

0 0

3200

1435 1435 1435

946946947

764 764 764

54 54 54

H H

G G

G

0

G

1765

Fig. 2. Prefix Automaton

1The prefix automaton matches up with the transition system obtained using
the approach presented in [16] with the parameters past, sequence and no
horizon.

B. Log-based exploration of Model Behavior

The second step in the precision analysis is to determine
the behavior of the model in order to compare it with the log
behavior. However, the exploration of the model underlying
behavior could be problematic in case of intractable (or
even infinite) underlying behavior. Therefore, the technique
presented in this work avoids the complete exploration of the
model behavior, and instead this exploration is restricted to the
observed log behavior. More concretely, the prefix automaton
of the log is used as guideline for detecting the situations
where the model allows more behavior than the log. The result
will be an extended prefix automaton, containing both log and
model behavior information.

Definition 5 (Extended Prefix Automaton): Given the pre-
fix automaton TS = (S, T,A, sin) of EL and the model
M , define the set of extended states and the set of extended
transitions as:

S+ = {s|s = s′t ∧ s′ ∈ S ∧ t ∈ avail(s′,M) ∧ s 6∈ S}
A+ = {(s′, t, s)|s = s′t ∧ s ∈ S+}

The extended prefix automaton is T̂S = (Ŝ, T, Â, sin) with
Ŝ = S ∪ S+, and Â = A ∪A+.

Notice that, for each state s ∈ S+ the occurrence value
sEL# = 0 because it does not appear as a prefix in the log,
i.e., s ∈ S+ denotes a state considered in the model but not
reflected in the log.

In order to extend the automaton we must be able to, given
any prefix σ in the log, compute the available tasks in the
model after executing σ. These tasks must be a superset of the
tasks observed in the log after σ. However, there may be traces
in the log with prefixes that do not satisfy this condition, i.e,
behavior in the log not included in the models behavior. These
traces, called non fitting traces, are the scope of the fitness
dimension of the conformance. Thus, the precision measure
presented in this work will only take into account the part
of the non fitting traces included in the model behavior, i.e.
the one that precision dimension concerns about. Furthermore,
in order to obtain a complete vision of the conformance, the
precision measure should be included together with measures
of the other dimensions like fitness (e.g., [17]).

A consideration must be made concerning about the de-
terminism of replaying a trace in the model. The approach
presented is able to deal with duplicate tasks (i.e., several
tasks in the model associated with the same log event) and
invisible tasks (i.e., tasks in the model associated with no
event in the log), through the invisible coverability graph [11].
However, sometimes, the inclusion of these kind of tasks may
produce indeterminism, i.e., given a trace, the possible set of
tasks available after replaying the trace may not be unique
[17], [11]. In such cases, the use of heuristics and best effort
techniques becomes necessary. For sake of clarity, in this work
a deterministic scenario is presented.

Following with the running example shown in Fig. 1, let
M1 in Fig. 1b be a possible model for the process. In this
case, the modeling language used is Petri nets. Notice that

M1 is deterministic and includes the language of the log. If
M1 is used to extend the prefix automaton of the log (Fig. 2),
it results in the extended prefix automaton shown in Fig. 3.
Gray states in the figure correspond to states in S+ (cf. Def 5).

A C D G H F A

D E A

D H F A

D F A

B

H

G

3200 1765 947 946

1435

818 764

54

H F

1 1 1 1

A

0 0

0 0

3200

1435 1435 1435

946946947

764 764 764

54 54 54

H H

G G

G

0

G

Fig. 3. Extended Prefix Automaton

C. Comparing Model and Log Behavior

Finally, once the prefix automaton contains information
about both behaviors (log and model), it is possible to compare
them, detecting the imprecisions between both behaviors.
These imprecisions denote the situations where the model
deviates from the log. A first straightforward way to define
these deviations, is defining the escaping states concept:

Definition 6 (Simple Escaping States ([11])): Given an ex-
tended prefix automaton T̂S = (Ŝ, T, Â, sin) and a state
s ∈ Ŝ, the set of simple escaping states at s is:

ES(s) = {s′|(s, e, s′) ∈ Â ∧ s′# = 0}

Note that the simple escaping states are always leaves of the
prefix automaton, and they coincide with the extended states
(S+) introduced in Def. 5. The approach presented in [11] uses
this definition of escaping edges, and is meant to measure the
precision of a system. However, there are situations where this
definition could be too restrictive, making the measurement of
precision quite sensitive with respect to the size of the log.
In order to reach a more stable measurement of precision,
a refined version of the escaping states is introduced in this
paper. This new definition takes into account the number of
occurrences in each prefix in order to determine if there exists
an escaping state or not.

Definition 7 (Escaping States and Outer States): Let
T̂S = (Ŝ, T, Â, sin) be the given extended prefix automaton
for the log EL and the model M , and consider a threshold
parameter γ ∈ [0, 1]. Given a state s ∈ Ŝ, the set of escaping
states at s is defined as:

EγS (s) = {s
′|(s, e, s′) ∈ Â ∧ (γ · s#) ≥ s′#}

In other words, the occurrence value of the state s′ (i.e., s′#)
must exceed the threshold defined for this point (i.e., γ · s#)
in order to not be considered as an escaping state. The set of
escaping states of a system is defined as:

EγS = {s ∈ EγS (sa)|@sa, sb, sc : s = sbx ∧ sb ∈ EγS (sc)}

The set EγS defines the border between the log and the model
behavior. The states that fall out of this border are called outer
states and are defined as:

OγS = {s 6∈ EγS |∃s
′ : s = s′x ∧ s′ ∈ EγS ∧ x ∈ T

∗}
Note that, some escaping states of a given state may not

belong to the escaping states of the whole system, i.e., they
belong to the outer states set. Following with the running
example, Fig. 4 shows the escaping and the outer states
for the extended prefix automaton of the log and model in
Fig. 1, considering γ = 0.03. The states filled in dark gray
are the escaping states, while the ones filled in light gray
correspond to the outer states. For instance, the state ACDGG
is considered escaping edge because its occurrence number
(i.e., 1) is less than the threshold defined for this point (i.e.,
0.03 · 947 = 28.41).

A C D G H F A

D E A

D H F A

D F A

B

H

G

3200 1765 947 946

1435

818 764

54

H F

1 1 1 1

A

0 0

0 0

3200

1435 1435 1435

946946947

764 764 764

54 54 54

H H

G G

G

0

G

Fig. 4. Escaping States and Outer States of the extended prefix automaton of
the example in Fig. 1 with γ = 0.03. The dark gray states (escaping states),
define the border between log and model behavior. The light gray states (outer
states), represent the states that fall out of the border.

IV. EVALUATING THE PRECISION

As it was mentioned in previous sections and it is proposed
in [11], in order to estimate the precision of a system one
can make use of the imprecisions detected when comparing
the behavior of the model reflected in the log. The metric
proposed in this section counts these imprecisions, weights
them according to how often they occur, and compares them
with the behavior allowed. This way of estimating precision is
strongly linked with the idea of estimating the effort needed
to achieve a model 100% precise with respect to the log.

Metric 1 (ETC Precision): Given a log EL, a model M ,
the extended prefix automaton T̂S = (Ŝ, T, Â, sin), and the
threshold parameter γ ∈ [0, 1], define I as the set of states
that are in the log behavior which are not escaping or outer
states, i.e., I = {s ∈ [Ŝ \ (EγS ∪O

γ
S)]}. The metric is defined

as follows:

etcP (γ) = 1−

∑
s∈I

(|EγS (s)| · s#)∑
s∈I

(|avail(s,M)| · s#)
(1)

By dividing the set of escaping states by the set of allowed
states, the metric evaluates the amount of overapproximation
in each state in I . Note that |EγS (s)| ≤ |avail(s,M)|, and
therefore 0 ≤ etcP ≤ 1. For instance, the metric value for the
running example in Fig. 1 is 0.83.

V. CONFIDENCE OVER THE PRECISION METRIC

Together with a metric, it is convenient to provide also
a confidence interval, i.e., some maximum and minimum
values estimating the up and down variabilities over the
metric computed, respectively. More specifically, the interval
presented in this section will reflect the possible variations of
the metric when considering k new traces. A narrow interval
indicates that considering a set of k incoming traces, the
metric should not vary significantly. On the other hand, a wide
interval reflects the opposite: a low confidence in the metric
provided, whose value could change drastically in the future.
The number k used to compute the interval may depend on the
future to consider: a low k is used to compute the confidence
in a near future, whereas with a large k, a large set of traces
is considered, and thus a longer term future is contemplated.
Notice that, taking a percentage of the log size as a k, will
not allow the comparison between logs of different size.

The confidence interval presented in this section is approx-
imated: it is not measuring real bounds of the metric, but
instead aims at estimating them with simple heuristics which
can be computed in a systematic manner.

A. Upper Confidence Value

In order to compute the upper value of the confidence
interval, the best possible scenario is considered: each one
of the k traces reaches some escaping state, covering this
state, i.e., the state will not be an escaping state any more
(graphically, it is a dark gray state that will be colored white in
Fig. 4). The number of traces needed to change the state from
escaping to non escaping will depend on the γ considered (see
Def. 7). Hence, the technique presented below estimates the
gain (i.e., the precision increase) of covering each escaping
state, and maximizes the total gain considering k as the
maximum number of traces used to cover escaping states.

Definition 8 (Cost and Gain of Covering an imprecision):
Let s′ ∈ Ŝ be an escaping state such that (s, e, s′) ∈ Â, and
let γ be the parameter used to define the escaping states. The
cost of covering s′, denoted as C(s′) = l with l ∈ N, is the
minimum l that satisfies (s# + l) · γ < (s′# + l). The gain of
s′ is defined as G(s′) = s#, i.e., the gain of reducing in one
the number of escaping states of the parent state s.

By inspecting the fraction part of formula (1), one can see
why the gain of covering the escaping state s′ is s#: if in state
s one escaping state is removed, then the new escaping estates
in s are |EγS (s)| − 1. Since this number is multiplied by s#
in the numerator part of the fraction, the numerator will be
reduced exactly in |EγS (s)| · s# − (|EγS (s)| − 1) · s# = s#.

Once the gain and the cost of covering an escaping state
have been defined, the maximum gain obtained with k traces
must be computed. This problem is analogous to the well
known Knapsack problem [18], which can be solved using
binary integer programming (BIP) [19]. The following BIP
model encodes the maximum gain over k traces:

1) Variables: The variable

Xi ∈ {0, 1} (2)

denotes if the escaping state i is covered or not.
2) Constraints: the total cost cannot exceed the number of

new traces seen. ∑
i∈EγS

C(i) ·Xi ≤ k (3)

3) Cost function: maximize the gain.

max
∑
i∈EγS

G(i) ·Xi (4)

The number of variables of the BIP model is |EγS |. This
number can be significantly reduced if the following fact is
considered: if C is the set of possible costs for a given model,
for each possible l ∈ C, at most bk/lc can be used in order
to satisfy (3). Hence the real upper bound to the number of
variables needed is

∑
l∈C
bk/lc.

Definition 9 (Upper Confidence Value): Let N and D be
the numerator and denominator of the metric etcP as defined
in (1), i.e., etcP (γ) = 1− (N\D). Let Gmax be the result
obtained using the optimization problem modeled above. The
upper confidence value is defined as follows:

U(k) = 1− N −Gmax

D
(5)

This problem has been modeled and implemented within the
ProM framework (cf. Sect. VII). Following with the running
example of Fig 1, and considering γ = 0.03 and k = 24,
the only escaping state with cost lower enough to be covered
with this k is the state ACGDG. The gain of covering this
state is 764. This value is subtracted from N, providing an
upper interval value of 0.85 for this scenario.

B. Lower Confidence Value

The idea for computing the lower confidence value is similar
to the upper value. However, in this case the k traces do
not cover escaping states, but instead represent new possible
behavior not observed yet, that may produce the rising of
new escaping states. In order to estimate the lower confidence
value, the average length of the traces in the log (let m) is
assumed to be the length of the new traces. These traces
denote a behavior not observed, and therefore not represented
in the extended prefix automaton. In the worst case scenario,
the inclusion of these traces in the automaton would result
in m · k new states. Each of these new states may contain
also new escaping states. Given that the worst case scenario is
considered, the number of escaping states in each new state is
|T−1|, i.e., all the tasks are available but only one is followed
by the trace. Given these considerations, the lower confidence
value is defined as follows:

Definition 10 (Lower Confidence Value): Let N and D be
the numerator and denominator of the metric etcP as defined
in (1), i.e., etcP (γ) = 1− (N\D). The lower confidence value
is:

L(k) = 1− N + (m · k · |T − 1|)
D + (m · k · |T |)

(6)

For instance, following with running example of Fig 1,
being m = 6 the average length of the traces, being T = 8
the number of tasks of the process, and considering γ = 0.03
and k = 24, the lower bound for this scenario would be:

L(k) = 1− N + (6 · 24 · 7)
D + (6 · 24 · 8)

= 0.80

VI. SEVERITY OF AN IMPRECISION

The computation of escaping states is an accurate mech-
anism to determine where exactly are the imprecisions of a
system. Defining the border between log and model behaviors
one can indicate where the efforts must be done in order to
achieve a precise representation of the reality. Looking at the
escaping states (Fig. 3) of the running example, it can be
seen that the imprecisions are produced by the loop on G:
a behavior present in the model, but not reflected in the log.

However, not all the imprecisions have the same importance:
some refer to exceptional and infrequent parts of the process
or are produced by the incompleteness of the log considered;
other imprecisions are clear and affect important and frequent
parts of the process. By assigning to each imprecision a sever-
ity degree, is is possible to compare and sort the imprecisions,
prioritizing those that must be fixed first.

The severity of an imprecision is a complex multifactored
concept with a strong subjective aspect that changes according
to the importance that a person gives to each factor. Therefore,
the severity of an imprecision can be defined as follows:

Definition 11 (Severity of an Imprecision): Let EγS be the
set of escaping states denoting the imprecisions of a system.
Given s ∈ EγS , the severity of the imprecision at s is

sev(s) = f(Fft, Aft, Sft) (7)

where Fft, Aft, Sft correspond to the frequency, alternation
and stability factors of the imprecision at s, and f is a user-
defined function that weights these three factors. In the rest
of the section techniques for the estimation of each factor are
presented.

In the following definitions, this context is assumed: a model
M , a log EL, the extended prefix automaton of EL on M
T̂S = (Ŝ, T, Â, sin), and (s′, e, s) ∈ Â where s ∈ EγS . In this
case, the imprecision ACH (shown in Fig. 5) of the running
example is used in order to illustrate the different factors of
the severity concept.

1765 947

818

0

s'

s

Fig. 5. Imprecision ACH of the running example of Fig. 1.

Factor 1 (Frequency): Let max# = max(x# | x ∈ Ŝ) be
the maximum occurrence value of all the states in Ŝ. The
frequency factor of the imprecision at s is defined as follows:

Fft(s) =
s′#

max#
(8)

According to the formula above, imprecisions concerning
more frequent parts of the process have more importance
(i.e., higher severity) than others which are less frequent. For
instance, imprecision ACH of Fig. 5 has a mid-value frequency
factor of 1765

3200 = 0.55, where 3200 is the maximum occurrence
value in the whole prefix automaton of Fig. 4.

The second factor addresses the possibility of choosing an
incorrect option at a given state. In this case, choosing an
incorrect option refers to choosing an imprecision, i.e., a path
allowed by the model but never seen in the log. Given a
situation where it is really likely to make a mistake, it must
have more priority (i.e., higher severity), than other situations
where choosing badly is not so probable.

Factor 2 (Alternation): Let PE(x) be the probability of
choosing an escaping state being in the state x. The alternation
factor of the imprecision at s is defined as Aft(s) = PE(s

′),
being s′ the predecessor of s. The distribution of PE(x)
may be different depending on the assumptions taken. If
no assumption is considered, a uniform distribution, where
each possible path has the same probability, must be applied.
Therefore, the alternation factor can be estimated as:

Aft(s) =
|EγS (s′)|

|avail(s′,M)|
(9)

i.e., it measures the amount of alternation in each imprecision.
For instance, for the imprecision of Fig. 5, the alternation value
is 1

3 = 0.33, denoting a mid-low probability of choosing a bad
path (the one represented by the imprecision at s) at this point.

The last factor, the stability factor, addresses the stability
or equilibrium of an imprecision, i.e., the probability of an
imprecision to stop being an escaping state anymore, after a
little perturbation.2 In our setting, the perturbation consists on
considering a small number of extra traces that pass through
an imprecision, and the effect of this perturbation in the
probability of the corresponding escaping state to remain being
an escaping state. The number of new traces considered (z)
is defined as a percentage (τ) of the total number of traces
observed at this point (s′#). An escaping state with a high
probability of remaining being an escaping state should be
tackled first (i.e., higher severity), than another with a low
probability, which denotes that it might disappear in the near
future (i.e., considering a larger log).

Factor 3 (Stability): Let τ ∈ [0, 1] be the parameter indi-
cating the percentage of new traces to be considered in order
to determine the stability of an imprecision, i.e., z = ds′# · τe
is the number of new traces to be considered. Let l ∈ N be the
smallest number such that the equation (s′#+z) ·γ < (s#+ l)
is satisfied, i.e., l defines the minimum number of traces the
state s must receive in order to change from escaping to non-
escaping state after considering z new traces in that point. For
instance, in the example of Fig. 5, and considering γ = 0.03
and τ = 0.06, z would be d1765 ·0.06e = 106 and l would be
d((1765 + 106) · 0.03) − 0e = 57. The stability factor of the

2The idea of introducing perturbations in order to estimate some property
has been used successfully in other fields, such as the measurement of
community robustness [20].

imprecision at s is the probability of s still being an escaping
state after considering z new traces, i.e.,

Sft(s, τ) = P zs (< l) =

l−1∑
i=0

P zs (= i) (10)

where P zs (< x) and P zs (= x) represent the probability that
the state s receives less than x (or exactly x) of the new z
traces considered in this point. Let ps define the probability
that a new trace in s′ follows the state s, and let 1−ps be the
probability that the trace follows one of the other successor
states of s′. According to the Binomial distribution [21], the
stability factor can be expressed as:

Sft(s, τ) =

l−1∑
i=0

(
z

i

)
(ps)

i(1− ps)z−i (11)

Formula (11) can be understood as follows: in order to s to
still be an escaping state, i successes (ps)

i and z−i failures
(1 − ps)z−i are needed. However, the i successes can occur
anywhere among the z traces, and there are

(
z
i

)
different ways

of distributing i successes in a sequence of z traces. The
probability ps may depend on the assumptions taken. Again, if
no knowledge regarding the distribution of the log is assumed,
an uniform distribution is taken. Therefore, if c is the number
of successor states of s′, the probability of each successor state
is 1/c, and formula (11) can be rewritten as:

Sft(s, τ) =

l−1∑
i=0

(
z

i

)(
1

c

)i(
1− 1

c

)z−i
(12)

In the example of Fig. 4, given the imprecision s =
ACGDG, and considering γ = 0.03 and τ = 0.06, the stability
factor value for s is 0.670, being z = 46 and l = 25.
This factor reflects that this imprecision has a mid-probability
of disappearing in the close future. This contrasts with the
stability factor value of 1 obtained from the imprecision
s = ACH (Fig. 5), with same γ and τ parameters, reflecting
a really stable imprecision.

Figure 6 shows two examples of severity diagrams (reflect-
ing all three factors) for two imprecisions: The first diagram
(a) corresponds to a really frequent imprecision. However,
the situation of that imprecision is really unstable and the
possibilities of choosing badly in that situation are really few.
The second imprecision, shown in the diagram (b), is much
more sever in general terms than the first one. It corresponds
to a more stable and dangerous situation, but it is less frequent
than the first one.

SftAft

Fft

(a)

SftAft

Fft

(b)

Fig. 6. Two examples of severity diagrams.

Bench |Log| γ k etcP Confidence (s)

w01 20
.03 1 .818 .723 - 1.0 1.4

10 .03 10 .818 .419 - 1.0 1.4
.06 1 .818 .723 - .818 1.5
.06 20 .818 .333 - 1.0 1.4

w01 200
.03 1 .818 .807 - .818 1.6

100 .03 10 .818 .723 - 1.0 1.5
.06 1 .818 .807 - .818 1.4
.06 20 .818 .653 - 1.0 1.5

w02 2
.03 1 .2 .152 - .218 1.5

1 .03 20 .2 .105 - .456 1.8
.06 1 .2 .152 - 218 1.5
.06 10 .2 .110 - .367 1.6

w02 200
.03 1 .2 .199 - .2 1.8

100 .03 20 .2 .185 - .246 1.6
.06 1 .2 .199 - .2 1.5
.06 10 .2 .192 - .209 1.6

(a)

Bench |Log| γ k etcP Confidence time(s)

a32

p20 180

.05 20

.543 .246 - .553 (307) 1 / 3 / 5
p40 360 .564 .345 - .570 (225) 1 / 5 / 6
p60 540 .576 .403 - .582 (179) 1 / 7 / 11
p80 720 .583 .441 - .587 (146) 1 / 12 / 17
p100 900 .592 .470 - .595 (125) 1 / 15 / 24
p150 1350 .591 .504 - .595 (91) 2 / 16 / 23
p200 1800 .591 .523 - .595 (72) 2 / 17 / 23
p250 2250 .590 .534 - .594 (60) 2 / 16 / 24
p300 2700 .591 .544 - .594 (50) 2 / 16 / 24

t32

p20 360

.05 20

.385 .250 - .387 (137) 2 / 67 / 121
p40 720 .391 .305 - .392 (87) 4 / 180 / 229
p60 1080 .392 .330 - .393 (63) 5 / 295 / 339
p80 1440 .393 .345 - .394 (49) 6 / 336 / 496
p100 1800 .393 .353 - .394 (41) 6 / 390 / 550
p150 2700 .393 .365 - .393 (28) 6 / 411 / 562
p200 3600 .393 .371 - .393 (22) 7 / 429 / 572
p250 4500 .393 .376 - .393 (17) 9 / 440 / 579
p300 5400 .393 .379 - .393 (14) 9 / 443 / 581

(b)TABLE I

Benchmark |Log| |T| τ γ etcP time (s)

large 01 25000 37 .06 .04 .705 34 / 38

large 02 25000 176 .06 .04 .627 98 / 102

large 03 10000 117 .06 .04 .465 31 / 33

large 04 10000 159 .06 .04 .524 37 / 39

TABLE II

VII. IMPLEMENTATION AND RESULTS

The approach presented in this paper has been implemented
as an extension of the ETConformance plug-in within ProM
6 framework [12]. The tool uses the open-source linear
programming solver LPSolve for computing the confidence
estimation technique presented in Sect. V. The purpose of the
experiments presented in this section is to illustrate the effect
of the different parameters in the metric results, and to show
the capacity of the technique in handling large specifications.

Table I (a) contains two simple sets of benchmarks, w01
and w02, used to exemplify the main concepts presented
in this paper.3 For producing the benchmarks, a Petri net
model has been created and simulated in order to derive each
log. The model used in the w01 benchmarks represents only
3 possible traces, while w02 allows for the interleaving of
10 activities, i.e., 10! possible traces. Considering this two
opposed scenarios allows to test the technique in the corner
cases: the logs in w01 contain only 2 different cases of the
3 allowed by the model, i.e., the precision tends to be high.
On the other hand, the logs in w02 contain only 2 different
cases out of the 10! possible traces allowed by their model,
i.e., the precision is low. The suffix X in the name of each
benchmark represents the number of instances of each case
contained in the log, e.g., w01 10 contains 10 traces of the
first case, and 10 traces of the second case (and provided that
only 2 different cases are included, the size of the log for this
benchmark is 20). Finally, the evaluation of the metric and the
time (in seconds) for different values of k and γ is reported.

The first conclusion one can draw from the numbers pro-
vided in Table I (a) is that etcP value is the same for both sets

3These benchmarks and other examples used in this paper available in [22].

of benchmarks w0X. This is something desirable, given that
in the w01 100 and w02 100 benchmarks, the instances of
each one of the two only different traces has grown uniformly
with respect to the small log, and therefore, the precision is
the same. However, the confidence interval is not the same for
each log, and as expected, it closely depends on the log size:
the more traces considered, the more confidence in the metric
value returned (i.e., the confidence interval becomes narrower).
Table I (a) also shows the influence of the number of new
traces to account for (k in Sect. V) in the confidence interval:
the greater k is considered, the farther is the future considered,
and therefore, the confidence in the metric value decreases
(wider interval). Finally, for each possible w01 X, we show
the use of different γ and its effect on the confidence interval.
Considering greater values of γ, the number of traces needed
to cover the escaping states increases, and consequently, less
escaping states can be covered with only k traces.

Additionally, experiments on publicly available benchmarks
have been performed. In Table I (b) a couple of these bench-
marks are studied in depth (but additional benchmarks can be
downloaded from [22]). These two benchmarks are based on
the logs a32f0n00 5 and t32f0n00 5, both publicly available
in [23]. The Petri net models used are the ones obtained
using the Petri net discovery ILPMiner [24] ProM plug-in. The
experiments conducted in Table I (b) focus on illustrating how
the growth of a log influences the metric and its confidence
given a particular selection of the stability and confidence
parameters presented in this paper. For these examples, greater
values of γ that cut off more than 10% of the behavior are not
considered. The column with pX reports the percentage of the
log considered in each case, i.e. p100 represents the original
a32f0n00 5 log whilst logs pX with X < 100 correspond to
slices of the original log, e.g., p20 contains the first 20% of
the original log traces. Logs pX with X > 100 are obtained by
choosing with uniform distribution among the existing traces
in the log the extra traces needed to achieve the desired size.
The wide spectrum of the set of benchmarks presented makes
it possible to illustrate the evolution of the approach presented

in this paper and can be considered as real situations in an IS
where trace sets are evaluated on a regular basis, e.g., monthly.
Finally, the table includes the running time: the time after
computing the metric, after computing the confidence, and the
final running time that includes the creation and visualization
of the imprecisions with its severity values in ProM.

A first conclusion on Table I (b) is the stability of the
approach with respect to the size of the log. Note that etcP
value tends to increase as new behavior is considered, e.g.,
between p20 and p100 there is a difference of 0.05. However,
this difference is extremely small considering that between p20
and p100 there is a 500% increment in the observed behavior.
Moreover, as more traces are included in the previously
observed behavior, the closer the metric value is to stabilizing.
The second conclusion one can extract from this table is the
dependency between the traces considered and the confidence
in the metric. As it was observed in Table I (a), increasing
the size of the trace set results in a narrower confidence
interval (despite both lower and upper bounds increase due
to the precision rising). Note also that both bounds are not
symmetric, i.e., the loss caused by the worst trace is usually
greater than the benefit of the better trace.

Finally, Table II is shown with the largest benchmarks, i.e.,
complex processes involving a large number of tasks and a
high degree of parallelism, and some including also noise,
duplicate and invisible tasks. These benchmarks have been
generated with PLG tool [25]. In this table, the time reported
corresponds to the time of computing only the metric, and the
time also including the computation of the severity. The table
illustrates that, even for large and complex benchmarks, the
time needed to calculate the metric and severity is reasonable.
However, given the prototyping nature of the plug-in, the
NP-HARD complexity of BIP, and the academic nature of
the Linear Programming solver used, the computation of the
confidence intervals can only be performed for small/medium
sized benchmarks. In future versions we will contemplate
relaxations of the BIP problem and the use of more powerful
solvers.

VIII. CONCLUSIONS AND FUTURE WORK

In this work, important aspects have been incorporated
in a precision checking framework: stability, confidence and
severity. The techniques developed have been implemented
as a ProM plug-in. The experiments performed reveal the
usefulness and significance of the elaborated precision analysis
presented in this paper.

As future work, several directions can be followed. First,
techniques visualizing the severity of the imprecisions com-
puted might be considered. On this regard, apart from coloring
the sever nodes in the extended prefix automaton, other tech-
niques that use alternatives representations can be explored.
Second, the study of automated techniques for precision
oriented model refinement is an interesting research problem
to address. Third, proposing a partitional approach of the
presented technique (i.e., not just one but disjunct prefix
automatons) in order to deal with very large logs and to put

less emphasis on the initial part of the model. Finally, adapting
the current implementation to deal with other models apart
from Petri nets would extend significantly the applicability of
the approach presented in this paper.

ACKNOWLEDGMENT

The authors would like to thank Wil van der Aalst, Daniel
Alonso and Adrià Gascón for their comments and observa-
tions.

REFERENCES

[1] W. M. P. van der Aalst, B. F. van Dongen, J. Herbst, L. Maruster,
G. Schimm, and A. J. M. M. Weijters, “Workflow mining: A survey
of issues and approaches,” Data Knowl. Eng., vol. 47, no. 2, pp. 237–
267, 2003.

[2] A. Rozinnat, “Process Mining: Conformance and Extension,” Ph.D.
dissertation, Technische Universiteit Eindhoven, 2010.

[3] A. Adriansyah, B. F. van Dongen, and W. M. P. van der Aalst, “Towards
Robust Conformance Checking,” in Business Process Intelligence, 2010.

[4] A. Rozinat, A. K. A. de Medeiros, C. W. Günther, A. J. M. M. Weijters,
and W. M. P. van der Aalst, “Towards an evaluation framework for
process mining algorithms,” BPM Center Report BPM-07-06, BPMcen-
ter.org, 2007.

[5] J. D. Weerdt, M. D. Backer, J. Vanthienen, and B. Baesens, “A critical
evaluation study of model-log metrics in Process Discovery,” in Business
Process Intelligence, 2010.

[6] G. Greco, A. Guzzo, L. Pontieri, and D. Saccà, “Discovering expressive
process models by clustering log traces,” IEEE Trans. Knowl. Data Eng.,
vol. 18, no. 8, pp. 1010–1027, 2006.

[7] A. K. A. de Medeiros, W. M. P. van der Aalst, and A. J. M. M. Weijters,
“Quantifying process equivalence based on observed behavior,” Data
Knowl. Eng., vol. 64, no. 1, pp. 55–74, 2008.

[8] W. M. P. van der Aalst, A. K. A. de Medeiros, and A. J. M. M. Weijters,
“Genetic process mining,” in ICATPN, vol. 3536, 2005, pp. 48–69.

[9] B. F. van Dongen, J. Mendling, and W. M. P. van der Aalst, “Structural
patterns for soundness of business process models,” in EDOC. IEEE
Computer Society, 2006, pp. 116–128.

[10] T. Calders, C. W. Günther, M. Pechenizkiy, and A. Rozinat, “Using
minimum description length for process mining,” in SAC, S. Y. Shin
and S. Ossowski, Eds. ACM, 2009, pp. 1451–1455.

[11] J. Munoz-Gama and J. Carmona, “A fresh look at precision in process
conformance,” in Business Process Management, Sep. 2010.

[12] “ProM 6 Framework,” http://prom.win.tue.nl/tools/prom6/.
[13] T. Murata, “Petri nets: Properties, analysis and applications.” Proceed-

ings of the IEEE, vol. 77, no. 4, pp. 541–580, April 1989.
[14] W. M. P. van der Aalst and A. H. M. ter Hofstede, “YAWL: yet another

workflow language,” Inf. Syst., vol. 30, no. 4, pp. 245–275, 2005.
[15] A. Arnold, Finite Transition Systems. Prentice Hall, 1994.
[16] W. M. P. van der Aalst, V. Rubin, H. M. W. E. Verbeek, B. F. van

Dongen, E. Kindler, and C. W. Günther, “Process mining: a two-step
approach to balance between underfitting and overfitting,” Software and
Systems Modeling, 2009.

[17] A. Rozinat and W. M. P. van der Aalst, “Conformance checking of
processes based on monitoring real behavior.” Information Systems,
vol. 33, no. 1, pp. 64–95, 2008.

[18] T. H. Cormen, C. Stein, R. L. Rivest, and C. E. Leiserson, Introduction
to Algorithms. McGraw-Hill Higher Education, 2001.

[19] A. Schrijver, Theory of Linear and Integer Programming, 1998.
[20] B. Karrer, E. Levina, and M. E. J. Newman, “Robustness of community

structure in networks,” Phys. Rev. E, vol. 77, no. 4, p. 046119, Apr 2008.
[21] G. E. P. Box, W. G. Hunter, and J. S. Hunter, Statistics for Experi-

menters: An Introduction to Design, Data Analysis, and Model Building.
New York: Wiley, 1978.

[22] “Benchmarks,” http://www.lsi.upc.edu/∼jmunoz/software.html.
[23] “Process Mining,” http://www.processmining.org.
[24] J. M. E. M. van der Werf, B. F. van Dongen, C. A. J. Hurkens, and

A. Serebrenik, “Process discovery using integer linear programming,”
in Petri Nets, ser. LNCS, vol. 5062, 2008, pp. 368–387.

[25] A. Burattin and A. Sperduti, “PLG: a Framework for the Generation of
Business Process Models and their Execution Logs,” in Business Process
Intelligence, 2010.

http://prom.win.tue.nl/tools/prom6/
http://www.lsi.upc.edu/~jmunoz/software.html
http://www.processmining.org

